Title Electrical Machines	Code 1010321231010320138
Field Electrical Engineering	Year / Semester 2 / 3
Specialty	Course
-	core
Hours	Number of credits
Lectures: 2 Classes: - Laboratory: - Projects / seminars: -	0
	Language
	polish

Lecturer:

prof. dr hab. inż. Andrzej Demenko prof. dr hab. inż. Lech Nowak Instytut Elektrotechniki i Elektroniki Przemysłowej 60-965 Poznań, ul. Piotrowo 3a tel. +48 061 665 23 88 e-mail: Andrzej.Demenko@put.poznan.pl Lech.Nowak@put.poznan.pl

Faculty:

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Obligatory subject, Faculty of Electrical Engineering, Field: Electrical Engineering, Full-time first-degree studies

Assumptions and objectives of the course:

The student should obtain knowledge of the magnetic circuits of electrical machines and knowledge of the constructions and performances of transformers and induction machine.

Contents of the course (course description):

Magnetic circuits. Transformers: transformer on no-load, transformer equivalent circuits, transformer on load, transformers for three phase circuits, parallel operation, selected transients. Electromechanical energy conversion principles. Rotating machines-basic concepts: distributed windings, rotating magnetic field, electromotive force inducted by a rotating magnetic field, winding factors. Induction machines: basic theory and construction, equivalent circuit, speed-torque curves, squirrel-cage rotor, skin effect in rotor bars, speed control.

Introductory courses and the required pre-knowledge:

Elementary knowledge of electromagnetism and knowledge of electric circuit analysis.

Courses form and teaching methods:

Lectures supported by transparencies, exercises related to practical problems.

Form and terms of complete the course - requirements and assessment methods: Oral examination.

Basic Bibliography:

Additional Bibliography: